

算力要像水源一樣,部署到離數(shù)據(jù)最近的地方。
作者|田思奇
編輯|栗子
過去三年,AI產(chǎn)業(yè)沉浸在輕盈的幻象里:大模型在云端無限生長,算法日新月異。似乎只要云端夠強(qiáng),智能就能無所不能。
但當(dāng)AI走進(jìn)醫(yī)院、工廠、礦山,面臨斷裂的接口、嘈雜的環(huán)境和無法預(yù)測的意外時才發(fā)現(xiàn),原來真實世界沒有標(biāo)準(zhǔn)化答案。
據(jù)「甲子光年」觀察,許多企業(yè)之所以對AI“只看不買”,正是因為以下這些現(xiàn)實阻力。
首先,物理距離決定了AI能否及時反應(yīng)。許多工業(yè)與醫(yī)療場景的數(shù)據(jù)量大得驚人,根本沒法往云端搬;而需要毫秒級判斷的機(jī)械臂、影像診斷設(shè)備、導(dǎo)航系統(tǒng),也容不下哪怕幾十毫秒的網(wǎng)絡(luò)延遲。一旦延遲累積,良品率、診斷準(zhǔn)確率都會被拖垮。行業(yè)逐漸形成的樸素共識是:算力必須像水源一樣,就近部署。
其次,是隱私的邊界。醫(yī)療影像、試飛數(shù)據(jù)、管網(wǎng)日志,這些數(shù)據(jù)不僅有商業(yè)價值,還牽涉公共風(fēng)險。交給外部環(huán)境處理,就意味著控制權(quán)被切割出去。把算力放回本地,相當(dāng)于給企業(yè)建了一個“物理保險箱”,所有計算在可控范圍內(nèi)完成。
只有讓數(shù)據(jù)不動、算力上門,行業(yè)AI的信任門檻才會真正被跨越。
第三,高昂的試錯成本扼殺了創(chuàng)新的腳步。AI開發(fā),本質(zhì)上是一門實驗科學(xué)。每調(diào)一次參數(shù)、每跑一次場景,都需要大量試驗。若每一步都要排隊等云資源,再付一筆不菲的賬單,團(tuán)隊的探索動力會被大幅削弱。
還有一個容易忽視的細(xì)節(jié),即技術(shù)的發(fā)展與行業(yè)的監(jiān)管步調(diào)不一。
互聯(lián)網(wǎng)行業(yè)習(xí)慣了一天一個版本,但醫(yī)療、航空、交通這些行業(yè)卻要穩(wěn)定、可追溯。一個通過審查的模型,其版本、參數(shù)都必須保持一致,任何難以解釋的變化都可能讓系統(tǒng)重新走一遍認(rèn)證流程。很多場景真正需要的,并不是每天都會“變聰明”的模型,而是一套永遠(yuǎn)能復(fù)現(xiàn)、能解釋、不會隨意波動的執(zhí)行系統(tǒng)。
云端仍然不可替代,它是預(yù)訓(xùn)練與大規(guī)模數(shù)據(jù)處理的最佳場所。但當(dāng)AI?要進(jìn)入手術(shù)室、產(chǎn)線、機(jī)庫,它必須換一種形態(tài):在噪聲、隔離網(wǎng)、高壓規(guī)范中穩(wěn)定運(yùn)行;在最忙的節(jié)點(diǎn)不掉鏈子;讓現(xiàn)場人員看得見、摸得著。
下一階段的AI競爭,正從算力規(guī)模轉(zhuǎn)向算力位置的爭奪。這便是行業(yè)AI必須經(jīng)歷的“硬著陸”。
1.?低空仿真,拒絕中斷

低空經(jīng)濟(jì)里,沒有天才式突破,只有把每一種可能的失敗都提前算清楚的工程學(xué)。AI在這里不能只“發(fā)揮創(chuàng)意”,而是要讓每一次計算都能經(jīng)得起飛行驗證。
要做到這一點(diǎn),算力放在哪,比算力有多大更關(guān)鍵。無論工程師是在設(shè)計機(jī)身結(jié)構(gòu)、優(yōu)化空氣動力,還是在測試電子系統(tǒng),他們需要的都不是千里之外的云端算力,而是一個就在手邊、自己說了算的本地工作站——一個既能承受海量仿真壓力,又能滿足嚴(yán)苛適航審計的“黑盒子”。
以氣動和結(jié)構(gòu)設(shè)計團(tuán)隊為例,工程師每修改一個設(shè)計參數(shù),就會產(chǎn)生數(shù)億個網(wǎng)格單元的計算任務(wù)。真正的考驗不僅是算力規(guī)模,更是長時間運(yùn)算的穩(wěn)定性。一次高保真氣動仿真往往需要連續(xù)計算上百小時,云端環(huán)境的任何意外中斷都是無法承受的代價。
英特爾酷睿Ultra 200S系列處理器采用了高能效的混合架構(gòu)設(shè)計。它集成的NPU、CPU、GPU三大計算引擎相互配合,既能確保業(yè)務(wù)穩(wěn)定運(yùn)行,又能有效控制能耗。搭載它的Dell Pro Max T2塔式工作站能夠根據(jù)仿真任務(wù)的不同階段,智能調(diào)度算力資源——NPU專攻高能效AI推理,CPU統(tǒng)籌調(diào)度與復(fù)雜計算,GPU兼顧圖形渲染、并行運(yùn)算及部分AI負(fù)載,實現(xiàn)從3D建模到仿真可視化的全流程高效協(xié)同。
這種設(shè)計的優(yōu)勢,在連續(xù)幾天的計算任務(wù)中體現(xiàn)得最為明顯。當(dāng)工作站以250W功率持續(xù)運(yùn)行數(shù)天時,處理器的高能效設(shè)計確保了計算單元的溫度可控,有效避免因過熱降頻導(dǎo)致的進(jìn)程中斷。
當(dāng)研發(fā)進(jìn)入地面測試階段,挑戰(zhàn)變得更加具體。在鐵鳥試驗臺或機(jī)庫總裝現(xiàn)場,需要實時處理數(shù)百個傳感器的多維數(shù)據(jù)。老辦法是“現(xiàn)場記筆記、回辦公室算、再跑現(xiàn)場改”,但AI時代的調(diào)試需要“現(xiàn)場看到問題,當(dāng)場就算出答案”。
進(jìn)入數(shù)字化協(xié)同階段,英特爾酷睿Ultra 200V系列處理器提供的最高120 TOPS本地AI算力改變了游戲規(guī)則。搭載該系列處理器的Dell Pro 14 Plus,讓工程師能夠深入現(xiàn)場。通過物理線纜直連飛行器接口,他們可以在機(jī)庫內(nèi)直接運(yùn)行全量故障診斷模型,實現(xiàn)真正的“算力進(jìn)場、數(shù)據(jù)就地分析”。
在充滿電磁干擾和振動噪聲的環(huán)境中,處理器的能效優(yōu)勢再次發(fā)揮作用。三風(fēng)扇散熱系統(tǒng)與專屬風(fēng)道設(shè)計,確保設(shè)備在長時間高負(fù)荷運(yùn)算下保持穩(wěn)定,環(huán)境再吵再亂,模型輸出都不會“跑偏”。
這是航空行業(yè)的硬性要求:每一步計算都必須能被追溯。只有將算力鎖定在本地硬件中,確保每一次推理的輸入一致、模型版本固化、運(yùn)算環(huán)境隔離,AI系統(tǒng)才能通過最嚴(yán)格的適航審查。
英特爾處理器提供的不僅是算力,更是構(gòu)建可信計算環(huán)境的基礎(chǔ)架構(gòu)。從桌面端到移動端,其強(qiáng)大的產(chǎn)品特性,支撐著飛行器在虛擬世界中經(jīng)歷億萬次驗證后,在現(xiàn)實天空中完成每一次平穩(wěn)的起降。
2.?知識庫研發(fā):從2小時到30分鐘

在知識密集型行業(yè),AI落地的真正瓶頸并非算法,而是算力與思考節(jié)奏的錯配。當(dāng)企業(yè)試圖將海量文檔轉(zhuǎn)化為可推理的知識圖譜時,每一次AI推理的延遲都在打斷人類思考的連續(xù)性。
云問科技深耕企業(yè)知識庫與智能問答系統(tǒng),他們在大量項目中反復(fù)看到同一個問題:最耗時的不是建圖,也不是訓(xùn)練,而是最后一步驗證。當(dāng)產(chǎn)品經(jīng)理檢查知識圖譜的邏輯鏈、開發(fā)者調(diào)試問答服務(wù)時,等待時間常常讓原本連貫的思路被迫“戛然而止”。
過去,產(chǎn)品總監(jiān)張雅冰處理一個知識清洗任務(wù)需要等待兩小時。她不得不在多個設(shè)計工具間頻繁切換,直到換用搭載英特爾酷睿Ultra 200H系列處理器的Dell Pro Max 16移動工作站,才改變了這一現(xiàn)狀。
該產(chǎn)品總算力最高可達(dá)99 TOPS,在實現(xiàn)AI本地加速的同時,可以輕松支撐企業(yè)對高算力和AI業(yè)務(wù)需求。另外,銳炫核顯媲美入門獨(dú)顯,GPU性能提升22%,集成英特爾Wi-Fi7,這滿滿的buff加持,使得文檔處理與數(shù)據(jù)分析耗時從2小時銳減至30分鐘。
更重要的是,實時反饋成為可能。當(dāng)原型修改能夠立即呈現(xiàn),當(dāng)知識圖譜的調(diào)整可以秒級驗證,產(chǎn)品設(shè)計的迭代速度不再受硬件性能制約。項目交付周期因此縮短20%-30%,這不僅僅是時間節(jié)省,更是思維流完整性的保障。
微服務(wù)架構(gòu)下的智能體系統(tǒng)需要AI輔助的實時調(diào)試——每次服務(wù)重啟都涉及模型熱加載、知識庫更新和多輪對話測試。英特爾酷睿Ultra 200S系列處理器的高效異構(gòu)計算能力,讓Dell Pro Max Tower T2工作站能同時承載多個AI服務(wù)的本地化運(yùn)行。

圖片來源:英特爾
英特爾架構(gòu)提供的不僅是算力,更是AI工作流的重構(gòu)。當(dāng)知識抽取、邏輯驗證、智能體調(diào)試這些原本需要云端往返的任務(wù),能在本地端側(cè)即時完成,人與AI的協(xié)作達(dá)到了新的同步頻率。產(chǎn)品經(jīng)理可以邊設(shè)計邊驗證知識邏輯,開發(fā)者可以邊編碼邊測試智能體行為,AI從批量處理器變成了隨時在線的“第二大腦”。
這才是知識工程領(lǐng)域真正的生產(chǎn)力革命:不是讓人等待AI,而是讓AI融入思考的每一個間隙。當(dāng)算力足夠貼近,足夠?qū)崟r,人與機(jī)器的知識共創(chuàng)才真正成為可能,而這正是本地AI計算帶來的范式轉(zhuǎn)變。
3.?醫(yī)療:安全高效的“數(shù)據(jù)孤島”

醫(yī)院對AI的謹(jǐn)慎并非源于技術(shù)懷疑,而是對復(fù)雜現(xiàn)實環(huán)境的清醒認(rèn)知。影像、病歷、檢驗系統(tǒng)彼此“各自為政”,再加上隱私紅線,任何AI?想進(jìn)醫(yī)院,都得先證明自己能在這套生態(tài)里真正 “活得下來”。
零氪云的切入口也正來自這里:先讓系統(tǒng)在醫(yī)院內(nèi)部真正跑起來。醫(yī)療AI的落地不是算法競賽,而是信任建立的過程。要讓醫(yī)生接受一個AI診療助手,首先需要在醫(yī)院內(nèi)部構(gòu)建完整的驗證閉環(huán)——從數(shù)據(jù)脫敏到模型調(diào)優(yōu),從邏輯驗證到臨床測試。
這條鏈路的起點(diǎn),是一臺能把整個AI流程扛在本地跑完的工作站。搭載英特爾酷睿Ultra 200S系列處理器的Dell Pro Max Tower T2成為關(guān)鍵基座,其高能效混合架構(gòu)讓它在處理醫(yī)療影像分析、病歷文本理解等任務(wù)時能夠智能調(diào)度計算資源。
為什么非得本地跑?一句話:省錢、放心。
一旦離開實驗室,真正的挑戰(zhàn)才開始。每家醫(yī)院的設(shè)備都不一樣,有的甚至用了十幾年,再加上網(wǎng)絡(luò)隔離,AI根本難以指望云端。
此時,搭載英特爾酷睿Ultra 200H系列處理器的Dell Pro Max 16 Plus移動工作站展現(xiàn)出獨(dú)特價值。工程師直接把設(shè)備背進(jìn)影像科和診室里,哪里出問題就在哪里調(diào),當(dāng)場看結(jié)果,不用等云端回消息。
當(dāng)Agent完成驗證、即將交付臨床使用時,項目團(tuán)隊自身也面臨新的挑戰(zhàn):需頻繁處理敏感數(shù)據(jù)、進(jìn)行模型輕量化驗證,同時兼顧協(xié)作效率與安全規(guī)范。
此時,搭載英特爾酷睿Ultra 200V處理器的Dell Pro 14 Plus AI PC成為團(tuán)隊的移動協(xié)作中樞。不管是在院區(qū)的臨時桌臺上,還是在高鐵上趕路,工程師都能隨開隨用,把調(diào)試工作繼續(xù)推進(jìn)。
至此,完整閉環(huán)得以建立,每一步的AI計算都在端側(cè)完成,敏感數(shù)據(jù)始終不出設(shè)備,既符合醫(yī)療安全要求,也避免了高頻驗證帶來的云端成本壓力。
這是對技術(shù)的考驗,也是對醫(yī)學(xué)責(zé)任的承諾。
4.?行業(yè)AI混合時代已來

從手術(shù)室到企業(yè)知識庫,從飛行測試臺到影視渲染機(jī)房,算力位置的變革正在穿透行業(yè)壁壘,進(jìn)入創(chuàng)新現(xiàn)場的核心。
飛行汽車設(shè)計公司Airspeeder借助搭載英特爾酷睿Ultra處理器的Dell Pro Max工作站,通過本地運(yùn)行的AI模型進(jìn)行生成式結(jié)構(gòu)優(yōu)化。工程師將起落架從傳統(tǒng)復(fù)合材料改為3D打印金屬,不僅重量減輕75%,強(qiáng)度還提升了一倍。
智能影像創(chuàng)作領(lǐng)域,中國傳媒大學(xué)基于搭載英特爾酷睿Ultra 200S系列處理器的Dell Pro Max Tower T2工作站,在本地完成高負(fù)載的AI推理任務(wù)。這意味著過去需要大型機(jī)房支持的特效生成、動態(tài)渲染等流程,如今在工作室里就能高效完成,創(chuàng)作周期大幅縮短。

正如IDC在《2026年中國PC市場十大洞察》中所指出的,端側(cè)推理憑借其實時響應(yīng)、隱私保護(hù)和高可靠性,正成為智能終端增長的關(guān)鍵驅(qū)動力。
在這一架構(gòu)中,英特爾酷睿Ultra處理器的CPU+GPU+NPU三引擎設(shè)計提供了核心支撐:NPU專注持續(xù)AI推理,GPU加速圖形計算,CPU確保系統(tǒng)穩(wěn)定運(yùn)行。這種分工讓端側(cè)設(shè)備首次具備了處理大模型推理等復(fù)雜任務(wù)的能力。
更深層的變化在于企業(yè)與AI關(guān)系的重構(gòu)。過去依賴云端時,企業(yè)不僅要持續(xù)支付調(diào)用費(fèi)用,業(yè)務(wù)數(shù)據(jù)還可能成為公共模型的訓(xùn)練素材;而基于英特爾架構(gòu)的本地算力,讓企業(yè)能將行業(yè)經(jīng)驗轉(zhuǎn)化為專屬AI模型,實現(xiàn)從“使用AI”到“擁有AI”的轉(zhuǎn)變。
未來的競爭優(yōu)勢,更取決于能否高效利用貼近現(xiàn)場的AI算力,深度融合人類專業(yè)經(jīng)驗與機(jī)器計算能力。
當(dāng)算力掙脫帶寬與距離的束縛,下一代企業(yè)智能體系雛形已現(xiàn),AI也終將無處不在、觸手可及。
(封面圖由AI生成,文中未說明圖片來源:Dell)
END.






